Files
executor/strategies/implementations.py
Jongheon Kim 01403c7df4 Initial commit: Django quantitative strategy executor
- Django 5.2.7 project with Python 3.13+
- Quant strategy management system with version control
- Strategy implementations using registry pattern
- API endpoints for strategy listing and execution
- Sample strategy implementations (MovingAverage, RSI, BollingerBand)
- Async strategy execution with status tracking

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-10-04 13:50:46 +09:00

202 lines
6.4 KiB
Python

from typing import Dict, Any
import time
import random
import math
from .base import BaseQuantStrategy, strategy
@strategy
class MovingAverageCrossover(BaseQuantStrategy):
"""이동평균선 교차 전략"""
@property
def name(self) -> str:
return "MovingAverageCrossover"
@property
def description(self) -> str:
return "단기 이동평균선이 장기 이동평균선을 상향 돌파할 때 매수, 하향 돌파할 때 매도하는 전략"
@property
def version(self) -> str:
return "1.0.0"
@property
def default_parameters(self) -> Dict[str, Any]:
return {
"short_window": 20,
"long_window": 50,
"initial_capital": 100000,
"position_size": 0.1
}
def validate_parameters(self, parameters: Dict[str, Any]) -> bool:
required_params = ["short_window", "long_window", "initial_capital"]
for param in required_params:
if param not in parameters:
return False
if parameters["short_window"] >= parameters["long_window"]:
return False
return True
def execute(self, parameters: Dict[str, Any] = None) -> Dict[str, Any]:
if parameters is None:
parameters = self.default_parameters
if not self.validate_parameters(parameters):
raise ValueError("Invalid parameters")
# 시뮬레이션 실행
time.sleep(1) # 실행 시간 시뮬레이션
# 모의 결과 생성
profit_rate = random.uniform(-0.15, 0.25)
trades_count = random.randint(15, 60)
win_rate = random.uniform(0.45, 0.75)
return {
"strategy": self.name,
"version": self.version,
"profit_loss": round(parameters["initial_capital"] * profit_rate, 2),
"profit_rate": round(profit_rate * 100, 2),
"trades_executed": trades_count,
"win_rate": round(win_rate, 3),
"execution_time": "1.2s",
"parameters_used": parameters,
"final_capital": round(parameters["initial_capital"] * (1 + profit_rate), 2)
}
@strategy
class RSIMeanReversion(BaseQuantStrategy):
"""RSI 평균회귀 전략"""
@property
def name(self) -> str:
return "RSIMeanReversion"
@property
def description(self) -> str:
return "RSI 지표를 이용한 평균회귀 전략. RSI가 과매수/과매도 구간에서 반대 방향으로 거래"
@property
def version(self) -> str:
return "1.0.0"
@property
def default_parameters(self) -> Dict[str, Any]:
return {
"rsi_period": 14,
"oversold_threshold": 30,
"overbought_threshold": 70,
"initial_capital": 100000,
"position_size": 0.05
}
def validate_parameters(self, parameters: Dict[str, Any]) -> bool:
required_params = ["rsi_period", "oversold_threshold", "overbought_threshold", "initial_capital"]
for param in required_params:
if param not in parameters:
return False
if not (0 < parameters["oversold_threshold"] < parameters["overbought_threshold"] < 100):
return False
return True
def execute(self, parameters: Dict[str, Any] = None) -> Dict[str, Any]:
if parameters is None:
parameters = self.default_parameters
if not self.validate_parameters(parameters):
raise ValueError("Invalid parameters")
# 시뮬레이션 실행
time.sleep(1.5) # 실행 시간 시뮬레이션
# 모의 결과 생성
profit_rate = random.uniform(-0.10, 0.18)
trades_count = random.randint(25, 80)
win_rate = random.uniform(0.40, 0.65)
return {
"strategy": self.name,
"version": self.version,
"profit_loss": round(parameters["initial_capital"] * profit_rate, 2),
"profit_rate": round(profit_rate * 100, 2),
"trades_executed": trades_count,
"win_rate": round(win_rate, 3),
"execution_time": "1.5s",
"parameters_used": parameters,
"final_capital": round(parameters["initial_capital"] * (1 + profit_rate), 2),
"max_drawdown": round(random.uniform(0.05, 0.20), 3)
}
@strategy
class BollingerBandBreakout(BaseQuantStrategy):
"""볼린저 밴드 돌파 전략"""
@property
def name(self) -> str:
return "BollingerBandBreakout"
@property
def description(self) -> str:
return "볼린저 밴드 상한선 돌파시 매수, 하한선 돌파시 매도하는 돌파 전략"
@property
def version(self) -> str:
return "2.0.0"
@property
def default_parameters(self) -> Dict[str, Any]:
return {
"period": 20,
"std_dev": 2.0,
"initial_capital": 100000,
"position_size": 0.08,
"stop_loss": 0.05
}
def validate_parameters(self, parameters: Dict[str, Any]) -> bool:
required_params = ["period", "std_dev", "initial_capital"]
for param in required_params:
if param not in parameters:
return False
if parameters["std_dev"] <= 0 or parameters["period"] <= 0:
return False
return True
def execute(self, parameters: Dict[str, Any] = None) -> Dict[str, Any]:
if parameters is None:
parameters = self.default_parameters
if not self.validate_parameters(parameters):
raise ValueError("Invalid parameters")
# 시뮬레이션 실행
time.sleep(2) # 실행 시간 시뮬레이션
# 모의 결과 생성
profit_rate = random.uniform(-0.20, 0.30)
trades_count = random.randint(10, 40)
win_rate = random.uniform(0.35, 0.70)
return {
"strategy": self.name,
"version": self.version,
"profit_loss": round(parameters["initial_capital"] * profit_rate, 2),
"profit_rate": round(profit_rate * 100, 2),
"trades_executed": trades_count,
"win_rate": round(win_rate, 3),
"execution_time": "2.0s",
"parameters_used": parameters,
"final_capital": round(parameters["initial_capital"] * (1 + profit_rate), 2),
"sharpe_ratio": round(random.uniform(0.5, 2.5), 2),
"volatility": round(random.uniform(0.15, 0.35), 3)
}